Numerical studies for solving fractional integro-differential equations
نویسندگان
چکیده
منابع مشابه
A numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملA Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....
متن کاملFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملSolving two-dimensional fractional integro-differential equations by Legendre wavelets
In this paper, we introduce the two-dimensional Legendre wavelets (2D-LWs), and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order. We also investigate convergence of the method. Finally, we give some illustrative examples to demonstrate the validity and efficiency of the method.
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Ocean Engineering and Science
سال: 2018
ISSN: 2468-0133
DOI: 10.1016/j.joes.2018.05.004